室外箱变的防护电涌电流的分配当电源由室外箱变引至设有防雷装置的建筑物内时,GB50057-20104.3.8条第4款要求:应在低压电源线路引入的总配电箱、配电柜处装设Ⅰ级试验的电涌保护器。室外箱变处如何设置电涌保护器呢?设有防雷装置的建筑物内的电气和电子系统,可能遭受雷击(S1损害源)时的地电位反击,也可能承受室外箱变及其埋地线路遭受雷击(S3损害源)的闪电电涌侵入。按照GB50057-2010,通常可仅考虑更严酷的地电位反击危害。如果不考虑其他服务设施分流的因素(或引入处采用非金属管道和非金属线路)的前提下,根据电阻耦合原理,雷击建筑物的全部雷电流在建筑物的接地装置和室外箱变的地之间分配,见图4。根据相关试验,施加雷电流i为200kA、10/350μs雷电流,建筑物和室外箱变的接地电阻R1=R2=30Ω时,电力电缆长度分别取50m、500m和1000m,雷电流分布见图5(引自GB/T19271.3-2005/IECTS61312:2000《雷电电磁脉冲的防护第3部分:对浪涌保护器的要求》,此规范已于2017年12月15日废止)。在冲击电流的初始阶段,雷电流的分配由系统的电感确定,到冲击电流的波尾阶段,电流的变化率较小,电涌的分配将由系统的阻抗确定,即:随着室外电缆长度增加,电源线路的阻抗增大,进入室外箱变接地装置的雷电流会相应减小。因此,雷电流的分配依据接地路径的阻抗分配,为方便估算,通常建筑物电气装置的接地极∞和室外箱变接地极之间按50%—50%分流原则。
无间隙金属氧化物避雷器的选择。选择的一般要求如下:(1)应按照使用地区的气温、海拔、风速、污秽以及等条件确定避雷器使用环境条件,并按系统的标称电压、系统电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。(2)按照被保护的对象确定避雷器的类型。(3)按长期作用于避雷器上的电压确定避雷器的持续运行电压。(4)按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。(5)估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。(6)根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。
高速路防雷检测有哪些项目?(1)避雷器1.检查接闪器的材料规格、引下线的焊接工艺、防腐措施、保护范围、接闪器网的网格尺寸、接闪器网天津防雷检测工程与保护器的安全距离;2.接闪器外观不得有明显的机械损伤、断裂和严重腐蚀。3.检查接闪器上是否有其他电线。4.测试接闪器与各引下线、屋面电气设备及金属构件和防雷装置、侧面碰撞防雷装置和接地装置等之间的电气连接。(2)引下线1.检查引下线的设置、材料规格、焊接工艺和防腐措施。2.检查引下线外观,不应有明显的机械损伤、断裂和严重腐蚀。3.检查各种信号线、电源线和引下线之间的距离。水平净距不小于1米,横向净距不小于0.3米(3)接地装置1.检查接地形式、接地体材料、防腐措施、图纸规格、截面积、厚度、埋深、焊接工艺、与引下线的连接;2.检查直接防雷人工接地体与建筑物入口或人行道之间的距离;3.次试验时,检查相邻接地体的对地距离,不做等电位连接。(4)等电位连接1.检查屋顶金属表面、立面金属表面、钢筋混凝土等大型金属件采取的等电位连接措施,并与接地装置进行电气连接试验;2.检查穿过每个防雷区连接处的金属部件,以及设备、金属管、电缆槽、电缆金属护套、金属框架、钢屋架、金属门窗等。并与附近的接地装置或等电位连接板进行等电位连接,以测试其电气连接。3.检查等电位接地端子板和连接线的安装位置、材料规格、连接方式和工艺;4.检查每个等电位接地端子板的安装位置,应设置在便于安装和检查的位置,不应设置在潮湿或有腐蚀性气体且易受机械损伤的地方。5.检查接地端子与高度超过45米、60米的二级、三级防雷建筑外墙栏杆、门窗的电气连接,并测试其电气连接。